Module Identifiable.Make

Used for making an Identifiable module. Here's an example:

module Id = struct
  module T = struct
    type t = A | B [@@deriving bin_io, compare, hash, sexp]
    include Sexpable.To_stringable (struct type nonrec t = t [@@deriving sexp] end)
    let module_name = "My_library.Id"
  end
  include T
  include Identifiable.Make (T)
end

Parameters

module M : sig ... end

Signature

include Bin_prot.Binable.S with type t := M.t
include Bin_prot.Binable.S_only_functions with type t := M.t
val bin_size_t : M.t Bin_prot.Size.sizer
val bin_write_t : M.t Bin_prot.Write.writer
val bin_read_t : M.t Bin_prot.Read.reader
val __bin_read_t__ : (int -> M.t) Bin_prot.Read.reader

This function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.

val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : M.t Bin_prot.Type_class.writer
val bin_reader_t : M.t Bin_prot.Type_class.reader
val hash_fold_t : Base.Hash.state -> M.t -> Base.Hash.state
include Ppx_sexp_conv_lib.Sexpable.S with type t := M.t
val t_of_sexp : Sexplib0.Sexp.t -> M.t
val sexp_of_t : M.t -> Sexplib0.Sexp.t
include S_common with type t := M.t
val sexp_of_t : M.t -> Ppx_sexp_conv_lib.Sexp.t
include Base.Stringable.S with type t := M.t
val of_string : string -> M.t
val to_string : M.t -> string
include Base.Pretty_printer.S with type t := M.t
val pp : Base.Formatter.t -> M.t -> unit
include Comparable.S_binable with type t := M.t
include Base.Comparable.S with type t := M.t
include Base.Comparisons.S with type t := M.t
include Base.Comparisons.Infix with type t := M.t
val (>=) : M.t -> M.t -> bool
val (<=) : M.t -> M.t -> bool
val (=) : M.t -> M.t -> bool
val (>) : M.t -> M.t -> bool
val (<) : M.t -> M.t -> bool
val (<>) : M.t -> M.t -> bool
val equal : M.t -> M.t -> bool
val compare : M.t -> M.t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : M.t -> M.t -> M.t
val max : M.t -> M.t -> M.t
val ascending : M.t -> M.t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : M.t -> M.t -> int
val between : M.t -> low:M.t -> high:M.t -> bool

between t ~low ~high means low <= t <= high

val clamp_exn : M.t -> min:M.t -> max:M.t -> M.t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : M.t -> min:M.t -> max:M.t -> M.t Base.Or_error.t
include Base.Comparator.S with type t := M.t
type comparator_witness
val validate_lbound : min:M.t Base.Maybe_bound.t -> M.t Base.Validate.check
val validate_ubound : max:M.t Base.Maybe_bound.t -> M.t Base.Validate.check
include Hashable.S_binable with type t := M.t
val hash_fold_t : Base.Hash.state -> M.t -> Base.Hash.state
val hashable : M.t Hashtbl.Hashable.t
module Table : Hashtbl.S_binable with type key = M.t
module Hash_set : Hash_set.S_binable with type elt = M.t
module Hash_queue : Hash_queue.S with type key = M.t