Core_kernel
Core_kernel
greatly expands the functionality available in Base while still remaining platform-agnostic. Core_kernel changes more frequently (i.e., is less stable) than Base.
Some modules are mere extensions of their counterparts in Base, usually adding generic functionality by including functors that make them binable, comparable, sexpable, blitable, etc. The bulk of Core_kernel, though, is modules providing entirely new functionality.
module Applicative = Base.Applicative
module Arg : sig ... end
module Array : sig ... end
module Avltree = Base.Avltree
module Backtrace = Base.Backtrace
module Bag : sig ... end
module Bigbuffer : sig ... end
module Bigstring : sig ... end
module Bigsubstring : sig ... end
module Bin_prot : sig ... end
module Binable : sig ... end
module Binary_search = Base.Binary_search
module Binary_searchable : sig ... end
module Blang : sig ... end
module Blit : sig ... end
module Bool : sig ... end
module Bounded_index : sig ... end
Bounded_index
creates unique index types with explicit bounds and human-readable labels. "(thing 2 of 0 to 4)" refers to a 0-based index for the third element of five with the label "thing", whereas a 1-based index for the second element of twelve with the label "item" renders as "(item 2 of 1 to 12)", even though both represent the index 2.
module Buffer = Base.Buffer
module Byte_units : sig ... end
module Bytes : sig ... end
module Caml = Caml
module Char : sig ... end
module Command : sig ... end
module Comparable : sig ... end
module Comparator : sig ... end
module Comparisons = Base.Comparisons
module Container : sig ... end
module Container_intf : sig ... end
module Continue_or_stop = Base.Continue_or_stop
module Core_kernel_stable : sig ... end
module Date : sig ... end
module Day_of_week : sig ... end
module Debug : sig ... end
module Deque : sig ... end
module Deriving_hash : sig ... end
module Digest = Md5
module Doubly_linked : sig ... end
module Either : sig ... end
module Ephemeron : sig ... end
module Equal = Base.Equal
module Error : sig ... end
module Exn = Base.Exn
module Fdeque : sig ... end
module Filename : sig ... end
module Float : sig ... end
module Float_with_finite_only_serialization : sig ... end
module Floatable = Base.Floatable
module Fn : sig ... end
module Formatter = Base.Formatter
module Fqueue : sig ... end
module Gc : sig ... end
module Hash = Base.Hash
module Hash_queue : sig ... end
module Hash_set : sig ... end
module Hashable : sig ... end
module Hashtbl : sig ... end
module Hashtbl_intf : sig ... end
module Heap_block : sig ... end
module Hexdump : sig ... end
module Hexdump_intf : sig ... end
module Host_and_port : sig ... end
module Identifiable : sig ... end
module Immediate_option : sig ... end
module Immediate_option_intf : sig ... end
module Info : sig ... end
module Int : sig ... end
module Int32 : sig ... end
module Int63 : sig ... end
module Int64 : sig ... end
module Int_conversions = Base.Int_conversions
module Int_intf : sig ... end
module Int_math = Base.Int_math
module Intable = Base.Intable
module Interfaces : sig ... end
module Invariant = Base.Invariant
module Lazy : sig ... end
module Linked_queue : sig ... end
module List : sig ... end
module Map : sig ... end
module Map_intf : sig ... end
module Maybe_bound : sig ... end
module Md5 : sig ... end
module Memo : sig ... end
module Monad = Base.Monad
module Month : sig ... end
module Nativeint : sig ... end
module No_polymorphic_compare : sig ... end
module Nothing : sig ... end
module Only_in_test : sig ... end
module Option : sig ... end
module Option_array : sig ... end
module Optional_syntax : sig ... end
module Optional_syntax_intf : sig ... end
module Or_error : sig ... end
module Ordered_collection_common : sig ... end
module Ordering : sig ... end
module Percent : sig ... end
module Perms : sig ... end
module Pid : sig ... end
module Poly = Base.Poly
module Polymorphic_compare = Poly
module Popcount = Base.Popcount
module Pretty_printer = Base.Pretty_printer
module Printexc : sig ... end
module Printf : sig ... end
module Queue : sig ... end
module Quickcheck : sig ... end
module Quickcheck_intf : sig ... end
module Quickcheckable : sig ... end
module Random = Base.Random
module Ref : sig ... end
module Result : sig ... end
module Robustly_comparable : sig ... end
module Sequence : sig ... end
module Set : sig ... end
module Set_intf : sig ... end
module Set_once : sig ... end
module Sexp_maybe = Sexp.Sexp_maybe
module Sexp : sig ... end
module Sexpable : sig ... end
module Sign : sig ... end
module Sign_or_nan : sig ... end
module Source_code_position : sig ... end
module Stable_comparable : sig ... end
module Stable_unit_test : sig ... end
module Stack : sig ... end
module Staged = Base.Staged
module String : sig ... end
module String_id : sig ... end
module Stringable = Base.Stringable
module Substring : sig ... end
module Substring_intf : sig ... end
module Sys = Sys
module Time : sig ... end
module Time_ns : sig ... end
module Tuple : sig ... end
module Tuple2 = Tuple.T2
module Tuple3 = Tuple.T3
module Type_equal : sig ... end
module Type_immediacy : sig ... end
module Uchar = Base.Uchar
module Uniform_array : sig ... end
module Union_find : sig ... end
module Unique_id : sig ... end
module Unit : sig ... end
module Unit_of_time : sig ... end
module Univ_map : sig ... end
module Unix : sig ... end
module Validate = Base.Validate
module Validated : sig ... end
module Weak = Weak
module With_return = Base.With_return
module Word_size = Base.Word_size
module type Unique_id = Unique_id.Id
Derived from Base.T
. Used for matching bare signatures with just a type.
module type T_bin = sig ... end
include
d first so that everything else shadows it
This module has exactly the same interface and implementation as INRIA's Pervasives, except that some things are deprecated in favor of Core equivalents.
Functions here are in one of four states: 1. Deprecated using @@deprecated
. 2. Accepted as part of Core for the forseeable future. 3. We haven't yet decided whether to deprecate, as indicated by a CR. 4. We plan to deprecate eventually, but haven't yet, as indicated by a CR.
Eventually, this module will be removed, and it will be recommended to compile with -nopervasives when using Core.
The Exit
exception is not raised by any library function. It is provided for use in your programs.
e1 = e2
tests for structural equality of e1
and e2
. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises Invalid_argument
. Equality between cyclic data structures may not terminate.
Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with ( = )
. As in the case of ( = )
, mutable structures are compared by contents. Comparison between functional values raises Invalid_argument
. Comparison between cyclic structures may not terminate.
e1 == e2
tests for physical equality of e1
and e2
. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2
is true if and only if physical modification of e1
also affects e2
. On non-mutable types, the behavior of ( == )
is implementation-dependent; however, it is guaranteed that e1 == e2
implies compare e1 e2 = 0
.
The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2
, e1
is evaluated first, and if it returns false
, e2
is not evaluated at all.
The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2
, e1
is evaluated first, and if it returns true
, e2
is not evaluated at all.
__LOC__
returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
__LINE__
returns the line number at which this expression appears in the file currently being parsed by the compiler.
__POS__
returns a tuple (file,lnum,cnum,enum)
, corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file
is the current filename, lnum
the line number, cnum
the character position in the line and enum
the last character position in the line.
__LOC_OF__ expr
returns a pair (loc, expr)
where loc
is the location of expr
in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
__LINE_OF__ expr
returns a pair (line, expr)
, where line
is the line number at which the expression expr
appears in the file currently being parsed by the compiler.
__POS_OF__ expr
returns a pair (expr,loc)
, where loc
is a tuple (file,lnum,cnum,enum)
corresponding to the location at which the expression expr
appears in the file currently being parsed by the compiler. file
is the current filename, lnum
the line number, cnum
the character position in the line and enum
the last character position in the line.
Reverse-application operator: x |> f |> g
is exactly equivalent to g (f (x))
.
Application operator: g @@ f @@ x
is exactly equivalent to g (f (x))
.
Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.
Integer division. Raise Division_by_zero
if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0
and y > 0
, x / y
is the greatest integer less than or equal to the real quotient of x
by y
. Moreover, (- x) / y = x / (- y) = - (x / y)
.
Integer remainder. If y
is not zero, the result of x mod y
satisfies the following properties: x = (x / y) * y + x mod y
and abs(x mod y) <= abs(y) - 1
. If y = 0
, x mod y
raises Division_by_zero
. Note that x mod y
is negative only if x < 0
. Raise Division_by_zero
if y
is zero.
Return the absolute value of the argument. Note that this may be negative if the argument is min_int
.
n lsl m
shifts n
to the left by m
bits. The result is unspecified if m < 0
or m >= bitsize
, where bitsize
is 32
on a 32-bit platform and 64
on a 64-bit platform.
n lsr m
shifts n
to the right by m
bits. This is a logical shift: zeroes are inserted regardless of the sign of n
. The result is unspecified if m < 0
or m >= bitsize
.
n asr m
shifts n
to the right by m
bits. This is an arithmetic shift: the sign bit of n
is replicated. The result is unspecified if m < 0
or m >= bitsize
.
OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity
for 1.0 /. 0.0
, neg_infinity
for -1.0 /. 0.0
, and nan
('not a number') for 0.0 /. 0.0
. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity
is 0.0
, and any arithmetic operation with nan
as argument returns nan
as result.
expm1 x
computes exp x -. 1.0
, giving numerically-accurate results even if x
is close to 0.0
.
log1p x
computes log(1.0 +. x)
(natural logarithm), giving numerically-accurate results even if x
is close to 0.0
.
Arc cosine. The argument must fall within the range [-1.0, 1.0]
. Result is in radians and is between 0.0
and pi
.
Arc sine. The argument must fall within the range [-1.0, 1.0]
. Result is in radians and is between -pi/2
and pi/2
.
atan2 y x
returns the arc tangent of y /. x
. The signs of x
and y
are used to determine the quadrant of the result. Result is in radians and is between -pi
and pi
.
hypot x y
returns sqrt(x *. x + y *. y)
, that is, the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or, equivalently, the distance of the point (x,y)
to origin.
Round above to an integer value. ceil f
returns the least integer value greater than or equal to f
. The result is returned as a float.
Round below to an integer value. floor f
returns the greatest integer value less than or equal to f
. The result is returned as a float.
copysign x y
returns a float whose absolute value is that of x
and whose sign is that of y
. If x
is nan
, returns nan
. If y
is nan
, returns either x
or -. x
, but it is not specified which.
mod_float a b
returns the remainder of a
with respect to b
. The returned value is a -. n *. b
, where n
is the quotient a /. b
rounded towards zero to an integer.
frexp f
returns the pair of the significant and the exponent of f
. When f
is zero, the significant x
and the exponent n
of f
are equal to zero. When f
is non-zero, they are defined by f = x *. 2 ** n
and 0.5 <= x < 1.0
.
Same as Caml.float_of_int
.
Same as Caml.int_of_float
.
Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan
or falls outside the range of representable integers.
A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0
. Stands for 'not a number'. Any floating-point operation with nan
as argument returns nan
as result. As for floating-point comparisons, =
, <
, <=
, >
and >=
return false
and <>
returns true
if one or both of their arguments is nan
.
The difference between 1.0
and the smallest exactly representable floating-point number greater than 1.0
.
type fpclass = Caml.fpclass =
The five classes of floating-point numbers, as determined by the Caml.classify_float
function.
val classify_float : float -> fpclass
Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
More string operations are provided in module String
.
More character operations are provided in module Char
.
Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0--255.
Discard the value of its argument and return ()
. For instance, ignore(f x)
discards the result of the side-effecting function f
. It is equivalent to f x; ()
, except that the latter may generate a compiler warning; writing ignore(f x)
instead avoids the warning.
Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
Convert the given string to a boolean. Raise Invalid_argument "bool_of_string"
if the string is not "true"
or "false"
.
Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x
or 0X
), octal (if it begins with 0o
or 0O
), or binary (if it begins with 0b
or 0B
). Raise Failure "int_of_string"
if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int
.
Convert the given string to a float. Raise Failure "float_of_string"
if the given string is not a valid representation of a float.
More list operations are provided in module List
.
Note: all input/output functions can raise Sys_error
when the system calls they invoke fail.
type in_channel = Caml.in_channel
The type of input channel.
type out_channel = Caml.out_channel
The type of output channel.
val stdin : Caml.in_channel
The standard input for the process.
val stdout : Caml.out_channel
The standard output for the process.
val stderr : Caml.out_channel
The standard error output for the process.
Print a string, followed by a newline character, on standard output and flush standard output.
Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.
Print a string, followed by a newline character on standard error and flush standard error.
Print a newline character on standard error, and flush standard error.
Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string"
if the line read is not a valid representation of an integer.
Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.
type open_flag = Caml.open_flag =
Opening modes for Caml.open_out_gen
and Caml.open_in_gen
.
val open_out : string -> Caml.out_channel
Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string -> Caml.out_channel
Same as Caml.open_out
, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_out
.
val open_out_gen : Caml.open_flag list -> int -> string -> Caml.out_channel
open_out_gen mode perm filename
opens the named file for writing, as described above. The extra argument mode
specify the opening mode. The extra argument perm
specifies the file permissions, in case the file must be created. Caml.open_out
and Caml.open_out_bin
are special cases of this function.
val flush : Caml.out_channel -> unit
Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val output_char : Caml.out_channel -> char -> unit
Write the character on the given output channel.
val output_string : Caml.out_channel -> string -> unit
Write the string on the given output channel.
val output_bytes : Caml.out_channel -> bytes -> unit
Write the byte sequence on the given output channel.
val output : Caml.out_channel -> bytes -> int -> int -> unit
output oc buf pos len
writes len
characters from byte sequence buf
, starting at offset pos
, to the given output channel oc
. Raise Invalid_argument "output"
if pos
and len
do not designate a valid range of buf
.
val output_substring : Caml.out_channel -> string -> int -> int -> unit
Same as output
but take a string as argument instead of a byte sequence.
val output_byte : Caml.out_channel -> int -> unit
Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Caml.out_channel -> int -> unit
Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Caml.input_binary_int
function. The format is compatible across all machines for a given version of OCaml.
val output_value : Caml.out_channel -> 'a -> unit
Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Caml.input_value
. See the description of module Marshal
for more information. Caml.output_value
is equivalent to Marshal.to_channel
with an empty list of flags.
val seek_out : Caml.out_channel -> int -> unit
seek_out chan pos
sets the current writing position to pos
for channel chan
. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.
val pos_out : Caml.out_channel -> int
Return the current writing position for the given channel. Does not work on channels opened with the Open_append
flag (returns unspecified results).
val out_channel_length : Caml.out_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Caml.out_channel -> unit
Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error
exception when they are applied to a closed output channel, except close_out
and flush
, which do nothing when applied to an already closed channel. Note that close_out
may raise Sys_error
if the operating system signals an error when flushing or closing.
val close_out_noerr : Caml.out_channel -> unit
Same as close_out
, but ignore all errors.
val set_binary_mode_out : Caml.out_channel -> bool -> unit
set_binary_mode_out oc true
sets the channel oc
to binary mode: no translations take place during output. set_binary_mode_out oc false
sets the channel oc
to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n
to \r\n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
val open_in : string -> Caml.in_channel
Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string -> Caml.in_channel
Same as Caml.open_in
, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_in
.
val open_in_gen : Caml.open_flag list -> int -> string -> Caml.in_channel
open_in_gen mode perm filename
opens the named file for reading, as described above. The extra arguments mode
and perm
specify the opening mode and file permissions. Caml.open_in
and Caml.open_in_bin
are special cases of this function.
val input_char : Caml.in_channel -> char
Read one character from the given input channel. Raise End_of_file
if there are no more characters to read.
val input_line : Caml.in_channel -> string
Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file
if the end of the file is reached at the beginning of line.
val input : Caml.in_channel -> bytes -> int -> int -> int
input ic buf pos len
reads up to len
characters from the given channel ic
, storing them in byte sequence buf
, starting at character number pos
. It returns the actual number of characters read, between 0 and len
(inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len
exclusive means that not all requested len
characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input
must be called again to read the remaining characters, if desired. (See also Caml.really_input
for reading exactly len
characters.) Exception Invalid_argument "input"
is raised if pos
and len
do not designate a valid range of buf
.
val really_input : Caml.in_channel -> bytes -> int -> int -> unit
really_input ic buf pos len
reads len
characters from channel ic
, storing them in byte sequence buf
, starting at character number pos
. Raise End_of_file
if the end of file is reached before len
characters have been read. Raise Invalid_argument "really_input"
if pos
and len
do not designate a valid range of buf
.
val really_input_string : Caml.in_channel -> int -> string
really_input_string ic len
reads len
characters from channel ic
and returns them in a new string. Raise End_of_file
if the end of file is reached before len
characters have been read.
val input_byte : Caml.in_channel -> int
Same as Caml.input_char
, but return the 8-bit integer representing the character. Raise End_of_file
if an end of file was reached.
val input_binary_int : Caml.in_channel -> int
Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See Caml.output_binary_int
. Raise End_of_file
if an end of file was reached while reading the integer.
val input_value : Caml.in_channel -> 'a
Read the representation of a structured value, as produced by Caml.output_value
, and return the corresponding value. This function is identical to Marshal.from_channel
; see the description of module Marshal
for more information, in particular concerning the lack of type safety.
val seek_in : Caml.in_channel -> int -> unit
seek_in chan pos
sets the current reading position to pos
for channel chan
. This works only for regular files. On files of other kinds, the behavior is unspecified.
val pos_in : Caml.in_channel -> int
Return the current reading position for the given channel.
val in_channel_length : Caml.in_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Caml.in_channel -> unit
Close the given channel. Input functions raise a Sys_error
exception when they are applied to a closed input channel, except close_in
, which does nothing when applied to an already closed channel.
val close_in_noerr : Caml.in_channel -> unit
Same as close_in
, but ignore all errors.
val set_binary_mode_in : Caml.in_channel -> bool -> unit
set_binary_mode_in ic true
sets the channel ic
to binary mode: no translations take place during input. set_binary_mode_out ic false
sets the channel ic
to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n
to \n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
module LargeFile : sig ... end
Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64
) instead of regular integers (type int
), these alternate functions allow operating on files whose sizes are greater than max_int
.
The type of references (mutable indirection cells) containing a value of type 'a
.
val ref : 'a -> 'a ref
Return a fresh reference containing the given value.
val (!) : 'a ref -> 'a
!r
returns the current contents of reference r
. Equivalent to fun r -> r.contents
.
val (:=) : 'a ref -> 'a -> unit
r := a
stores the value of a
in reference r
. Equivalent to fun r v -> r.contents <- v
.
val incr : int ref -> unit
Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r
.
val decr : int ref -> unit
Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r
.
Result type
Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf
and to print data with formatted output functions from modules Printf
and Format
.
Format strings are made of three kinds of entities:
'%'
followed by one or more characters specifying what kind of argument to read or print,'@'
followed by one or more characters specifying how to read or print the argument,There is an additional lexical rule to escape the special characters '%'
and '@'
in format strings: if a special character follows a '%'
character, it is treated as a plain character. In other words, "%%"
is considered as a plain '%'
and "%@"
as a plain '@'
.
For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf
, Printf
and Format
.
type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6
. The two simplified types, format
and format4
below are included for backward compatibility with earlier releases of OCaml.
The meaning of format string type parameters is as follows:
'a
is the type of the parameters of the format for formatted output functions (printf
-style functions); 'a
is the type of the values read by the format for formatted input functions (scanf
-style functions).'b
is the type of input source for formatted input functions and the type of output target for formatted output functions. For printf
-style functions from module Printf
, 'b
is typically out_channel
; for printf
-style functions from module Format
, 'b
is typically Format.formatter
; for scanf
-style functions from module Scanf
, 'b
is typically Scanf.Scanning.in_channel
.Type argument 'b
is also the type of the first argument given to user's defined printing functions for %a
and %t
conversions, and user's defined reading functions for %r
conversion.
'c
is the type of the result of the %a
and %t
printing functions, and also the type of the argument transmitted to the first argument of kprintf
-style functions or to the kscanf
-style functions.'d
is the type of parameters for the scanf
-style functions.'e
is the type of the receiver function for the scanf
-style functions.'f
is the final result type of a formatted input/output function invocation: for the printf
-style functions, it is typically unit
; for the scanf
-style functions, it is typically the result type of the receiver function.type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string
Converts a format string into a string.
format_of_string s
returns a format string read from the string literal s
. Note: format_of_string
can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string
function.
val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('f, 'b, 'c, 'e, 'g, 'h) format6 -> ('a, 'b, 'c, 'd, 'g, 'h) format6
f1 ^^ f2
catenates format strings f1
and f2
. The result is a format string that behaves as the concatenation of format strings f1
and f2
: in case of formatted output, it accepts arguments from f1
, then arguments from f2
; in case of formatted input, it returns results from f1
, then results from f2
.
Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all
. An implicit exit 0
is performed each time a program terminates normally. An implicit exit 2
is performed if the program terminates early because of an uncaught exception.
Register the given function to be called at program termination time. The functions registered with at_exit
will be called when the program executes Caml.exit
, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added with at_exit
is called first.
include module type of struct include Int.Replace_polymorphic_compare end
include Base.Comparisons.Infix with type t := int
compare t1 t2
returns 0 if t1
is equal to t2
, a negative integer if t1
is less than t2
, and a positive integer if t1
is greater than t2
.
include module type of struct include Base_quickcheck.Export end
Provides default generators, observers, and shrinkers for built-in types. Follows ppx_quickcheck naming conventions.
val quickcheck_generator_unit : Base.unit Base_quickcheck.Generator.t
val quickcheck_generator_bool : Base.bool Base_quickcheck.Generator.t
val quickcheck_generator_char : Base.char Base_quickcheck.Generator.t
val quickcheck_generator_string : Base.string Base_quickcheck.Generator.t
val quickcheck_generator_int : Base.int Base_quickcheck.Generator.t
val quickcheck_generator_int32 : Base.int32 Base_quickcheck.Generator.t
val quickcheck_generator_int64 : Base.int64 Base_quickcheck.Generator.t
val quickcheck_generator_nativeint : Base.nativeint Base_quickcheck.Generator.t
val quickcheck_generator_float : Base.float Base_quickcheck.Generator.t
val quickcheck_observer_unit : Base.unit Base_quickcheck.Observer.t
val quickcheck_observer_bool : Base.bool Base_quickcheck.Observer.t
val quickcheck_observer_char : Base.char Base_quickcheck.Observer.t
val quickcheck_observer_string : Base.string Base_quickcheck.Observer.t
val quickcheck_observer_int : Base.int Base_quickcheck.Observer.t
val quickcheck_observer_int32 : Base.int32 Base_quickcheck.Observer.t
val quickcheck_observer_int64 : Base.int64 Base_quickcheck.Observer.t
val quickcheck_observer_nativeint : Base.nativeint Base_quickcheck.Observer.t
val quickcheck_observer_float : Base.float Base_quickcheck.Observer.t
val quickcheck_shrinker_unit : Base.unit Base_quickcheck.Shrinker.t
val quickcheck_shrinker_bool : Base.bool Base_quickcheck.Shrinker.t
val quickcheck_shrinker_char : Base.char Base_quickcheck.Shrinker.t
val quickcheck_shrinker_string : Base.string Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int : Base.int Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int32 : Base.int32 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int64 : Base.int64 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_nativeint : Base.nativeint Base_quickcheck.Shrinker.t
val quickcheck_shrinker_float : Base.float Base_quickcheck.Shrinker.t
val quickcheck_generator_option : 'a Base_quickcheck.Generator.t -> 'a Base.option Base_quickcheck.Generator.t
val quickcheck_generator_list : 'a Base_quickcheck.Generator.t -> 'a Base.list Base_quickcheck.Generator.t
val quickcheck_observer_option : 'a Base_quickcheck.Observer.t -> 'a Base.option Base_quickcheck.Observer.t
val quickcheck_observer_list : 'a Base_quickcheck.Observer.t -> 'a Base.list Base_quickcheck.Observer.t
val quickcheck_shrinker_option : 'a Base_quickcheck.Shrinker.t -> 'a Base.option Base_quickcheck.Shrinker.t
val quickcheck_shrinker_list : 'a Base_quickcheck.Shrinker.t -> 'a Base.list Base_quickcheck.Shrinker.t
type bigstring = Sexplib.Conv.bigstring
val sexp_of_bigstring : bigstring -> Ppx_sexp_conv_lib.Sexp.t
val bigstring_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bigstring
type mat = Sexplib.Conv.mat
val sexp_of_mat : mat -> Ppx_sexp_conv_lib.Sexp.t
val mat_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> mat
type vec = Sexplib.Conv.vec
val sexp_of_vec : vec -> Ppx_sexp_conv_lib.Sexp.t
val vec_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> vec
val sexp_of_opaque : _ -> Base.Sexp.t
val opaque_of_sexp : Base.Sexp.t -> _
val sexp_of_pair : ('a -> Base.Sexp.t) -> ('b -> Base.Sexp.t) -> ('a * 'b) -> Base.Sexp.t
val pair_of_sexp : (Base.Sexp.t -> 'a) -> (Base.Sexp.t -> 'b) -> Base.Sexp.t -> 'a * 'b
exception Of_sexp_error of Base.Exn.t * Base.Sexp.t
val of_sexp_error : Base.String.t -> Base.Sexp.t -> _
val of_sexp_error_exn : Base.Exn.t -> Base.Sexp.t -> _
include module type of struct include Interfaces end
Various interface exports.
module type Applicative = Base.Applicative.S
module type Binable = sig ... end
module type Comparable = Comparable.S
module type Comparable_binable = Comparable.S_binable
module type Floatable = Base.Floatable.S
module type Hashable = Hashable.S
module type Hashable_binable = Hashable.S_binable
module type Identifiable = Identifiable.S
module type Infix_comparators = Comparable.Infix
module type Intable = Base.Intable.S
module type Monad = Base.Monad.S
module type Quickcheckable = Quickcheckable.S
module type Robustly_comparable = Robustly_comparable.S
module type Sexpable = Sexpable.S
module type Stable = sig ... end
module type Stable_int63able = sig ... end
module type Stable_without_comparator = sig ... end
module type Stable1 = sig ... end
module type Stable2 = sig ... end
module type Stable3 = sig ... end
module type Stable4 = sig ... end
module type Stringable = Base.Stringable.S
module type Unit = Unit.S
include module type of struct include List.Infix end
never_returns
should be used as the return type of functions that don't return and might block forever, rather than 'a
or _
. This forces callers of such functions to have a call to never_returns
at the call site, which makes it clear to readers what's going on. We do not intend to use this type for functions such as failwithf
that always raise an exception.
type never_returns = Nothing.t
val sexp_of_never_returns : never_returns -> Ppx_sexp_conv_lib.Sexp.t
val never_returns : Nothing.t -> 'a
include module type of struct include Ordering.Export end
include module type of struct include Perms.Export end
val bin_shape_read : Bin_prot.Shape.t
val bin_size_read : read Bin_prot.Size.sizer
val bin_write_read : read Bin_prot.Write.writer
val bin_writer_read : read Bin_prot.Type_class.writer
val bin_read_read : read Bin_prot.Read.reader
val __bin_read_read__ : (Base.Int.t -> read) Bin_prot.Read.reader
val bin_reader_read : read Bin_prot.Type_class.reader
val bin_read : read Bin_prot.Type_class.t
val compare_read : read -> read -> Base.Int.t
val hash_fold_read : Base.Hash.state -> read -> Base.Hash.state
val hash_read : read -> Base.Hash.hash_value
val sexp_of_read : read -> Ppx_sexp_conv_lib.Sexp.t
val read_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read
We don't expose bin_io
for write
due to a naming conflict with the functions exported by bin_io
for read_write
. If you want bin_io
for write
, use Write.t
.
val compare_write : write -> write -> Base.Int.t
val hash_fold_write : Base.Hash.state -> write -> Base.Hash.state
val hash_write : write -> Base.Hash.hash_value
val sexp_of_write : write -> Ppx_sexp_conv_lib.Sexp.t
val write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> write
val bin_shape_immutable : Bin_prot.Shape.t
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : (Base.Int.t -> immutable) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_immutable : immutable Bin_prot.Type_class.t
val compare_immutable : immutable -> immutable -> Base.Int.t
val hash_fold_immutable : Base.Hash.state -> immutable -> Base.Hash.state
val hash_immutable : immutable -> Base.Hash.hash_value
val sexp_of_immutable : immutable -> Ppx_sexp_conv_lib.Sexp.t
val immutable_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> immutable
val bin_shape_read_write : Bin_prot.Shape.t
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : (Base.Int.t -> read_write) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_read_write : read_write Bin_prot.Type_class.t
val compare_read_write : read_write -> read_write -> Base.Int.t
val hash_fold_read_write : Base.Hash.state -> read_write -> Base.Hash.state
val hash_read_write : read_write -> Base.Hash.hash_value
val sexp_of_read_write : read_write -> Ppx_sexp_conv_lib.Sexp.t
val read_write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read_write
val bin_shape_perms : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_perms : 'a Bin_prot.Size.sizer -> 'a perms Bin_prot.Size.sizer
val bin_write_perms : 'a Bin_prot.Write.writer -> 'a perms Bin_prot.Write.writer
val bin_writer_perms : 'a Bin_prot.Type_class.writer -> 'a perms Bin_prot.Type_class.writer
val bin_read_perms : 'a Bin_prot.Read.reader -> 'a perms Bin_prot.Read.reader
val __bin_read_perms__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a perms) Bin_prot.Read.reader
val bin_reader_perms : 'a Bin_prot.Type_class.reader -> 'a perms Bin_prot.Type_class.reader
val bin_perms : 'a Bin_prot.Type_class.t -> 'a perms Bin_prot.Type_class.t
val compare_perms : ('a -> 'a -> Base.Int.t) -> 'a perms -> 'a perms -> Base.Int.t
val hash_fold_perms : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a perms -> Base.Hash.state
val sexp_of_perms : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a perms -> Ppx_sexp_conv_lib.Sexp.t
val perms_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a perms
include module type of struct include Result.Export end
val is_ok : (_, _) Base.Result.t -> bool
val is_error : (_, _) Base.Result.t -> bool
exception Bug of Base.String.t
exception C_malloc_exn of Base.Int.t * Base.Int.t
Raised if malloc in C bindings fail (errno * size).
exception Finally of Base.Exn.t * Base.Exn.t
val bprintf : Caml.Buffer.t -> ('a, Caml.Buffer.t, unit) format -> 'a
val eprintf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val error : ?strict:unit -> string -> 'a -> ('a -> Base.Sexp.t) -> 'b Or_error.t
val error_s : Base.Sexp.t -> 'a Or_error.t
val failwithf : ('a, unit, string, unit -> 'b) format4 -> 'a
val failwithp : ?strict:Base.Unit.t -> Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'b
val failwiths : ?strict:Base.Unit.t -> here:Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'b
val force : 'a Base.Lazy.t -> 'a
val fprintf : Stdio.Out_channel.t -> ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val invalid_argf : ('a, unit, string, unit -> 'b) format4 -> 'a
val ifprintf : 'a -> ('b, 'a, 'c, unit) format4 -> 'b
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b
val ok_exn : 'a Or_error.t -> 'a
val print_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val eprint_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val printf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val raise_s : Base.Sexp.t -> 'a
val sprintf : ('a, unit, string) format -> 'a
val stage : 'a -> 'a Base.Staged.t
val unstage : 'a Base.Staged.t -> 'a
val with_return : ('a Base.With_return.return -> 'a) -> 'a
val with_return_option : ('a Base.With_return.return -> unit) -> 'a option
include module type of struct include Typerep_lib.Std_internal end
val typerep_of_int63 : Base.Int63.t Typerep.t
val value_tuple0 : tuple0
val typerep_of_tuple0 : tuple0 Typerep.t
val typename_of_int63 : Base.Int63.t Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val bin_shape_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_array : 'a Bin_prot.Size.sizer -> 'a Base.Array.t Bin_prot.Size.sizer
val bin_write_array : 'a Bin_prot.Write.writer -> 'a Base.Array.t Bin_prot.Write.writer
val bin_writer_array : 'a Bin_prot.Type_class.writer -> 'a Base.Array.t Bin_prot.Type_class.writer
val bin_read_array : 'a Bin_prot.Read.reader -> 'a Base.Array.t Bin_prot.Read.reader
val __bin_read_array__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Array.t) Bin_prot.Read.reader
val bin_reader_array : 'a Bin_prot.Type_class.reader -> 'a Base.Array.t Bin_prot.Type_class.reader
val bin_array : 'a Bin_prot.Type_class.t -> 'a Base.Array.t Bin_prot.Type_class.t
val compare_array : ('a -> 'a -> Base.Int.t) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Int.t
val equal_array : ('a -> 'a -> Base.Bool.t) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Bool.t
val sexp_of_array : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Array.t -> Ppx_sexp_conv_lib.Sexp.t
val array_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Array.t
val array_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_array : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Array.t Typerep_lib.Std.Typerep.t
val typename_of_array : 'a Typerep_lib.Std.Typename.t -> 'a Base.Array.t Typerep_lib.Std.Typename.t
val bin_shape_bool : Bin_prot.Shape.t
val bin_size_bool : Base.Bool.t Bin_prot.Size.sizer
val bin_write_bool : Base.Bool.t Bin_prot.Write.writer
val bin_writer_bool : Base.Bool.t Bin_prot.Type_class.writer
val bin_read_bool : Base.Bool.t Bin_prot.Read.reader
val __bin_read_bool__ : (Base.Int.t -> Base.Bool.t) Bin_prot.Read.reader
val bin_reader_bool : Base.Bool.t Bin_prot.Type_class.reader
val bin_bool : Base.Bool.t Bin_prot.Type_class.t
val compare_bool : Base.Bool.t -> Base.Bool.t -> Base.Int.t
val equal_bool : Base.Bool.t -> Base.Bool.t -> Base.Bool.t
val hash_fold_bool : Base.Hash.state -> Base.Bool.t -> Base.Hash.state
val hash_bool : Base.Bool.t -> Base.Hash.hash_value
val sexp_of_bool : Base.Bool.t -> Ppx_sexp_conv_lib.Sexp.t
val bool_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bool.t
val bool_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_bool : Base.Bool.t Typerep_lib.Std.Typerep.t
val typename_of_bool : Base.Bool.t Typerep_lib.Std.Typename.t
val bin_shape_char : Bin_prot.Shape.t
val bin_size_char : Base.Char.t Bin_prot.Size.sizer
val bin_write_char : Base.Char.t Bin_prot.Write.writer
val bin_writer_char : Base.Char.t Bin_prot.Type_class.writer
val bin_read_char : Base.Char.t Bin_prot.Read.reader
val __bin_read_char__ : (Base.Int.t -> Base.Char.t) Bin_prot.Read.reader
val bin_reader_char : Base.Char.t Bin_prot.Type_class.reader
val bin_char : Base.Char.t Bin_prot.Type_class.t
val compare_char : Base.Char.t -> Base.Char.t -> Base.Int.t
val equal_char : Base.Char.t -> Base.Char.t -> Base.Bool.t
val hash_fold_char : Base.Hash.state -> Base.Char.t -> Base.Hash.state
val hash_char : Base.Char.t -> Base.Hash.hash_value
val sexp_of_char : Base.Char.t -> Ppx_sexp_conv_lib.Sexp.t
val char_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Char.t
val char_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_char : Base.Char.t Typerep_lib.Std.Typerep.t
val typename_of_char : Base.Char.t Typerep_lib.Std.Typename.t
val bin_shape_float : Bin_prot.Shape.t
val bin_size_float : Base.Float.t Bin_prot.Size.sizer
val bin_write_float : Base.Float.t Bin_prot.Write.writer
val bin_writer_float : Base.Float.t Bin_prot.Type_class.writer
val bin_read_float : Base.Float.t Bin_prot.Read.reader
val __bin_read_float__ : (Base.Int.t -> Base.Float.t) Bin_prot.Read.reader
val bin_reader_float : Base.Float.t Bin_prot.Type_class.reader
val bin_float : Base.Float.t Bin_prot.Type_class.t
val compare_float : Base.Float.t -> Base.Float.t -> Base.Int.t
val equal_float : Base.Float.t -> Base.Float.t -> Base.Bool.t
val hash_fold_float : Base.Hash.state -> Base.Float.t -> Base.Hash.state
val hash_float : Base.Float.t -> Base.Hash.hash_value
val sexp_of_float : Base.Float.t -> Ppx_sexp_conv_lib.Sexp.t
val float_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Float.t
val float_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_float : Base.Float.t Typerep_lib.Std.Typerep.t
val typename_of_float : Base.Float.t Typerep_lib.Std.Typename.t
val bin_shape_int : Bin_prot.Shape.t
val bin_size_int : Base.Int.t Bin_prot.Size.sizer
val bin_write_int : Base.Int.t Bin_prot.Write.writer
val bin_writer_int : Base.Int.t Bin_prot.Type_class.writer
val bin_read_int : Base.Int.t Bin_prot.Read.reader
val __bin_read_int__ : (Base.Int.t -> Base.Int.t) Bin_prot.Read.reader
val bin_reader_int : Base.Int.t Bin_prot.Type_class.reader
val bin_int : Base.Int.t Bin_prot.Type_class.t
val compare_int : Base.Int.t -> Base.Int.t -> Base.Int.t
val equal_int : Base.Int.t -> Base.Int.t -> Base.Bool.t
val hash_fold_int : Base.Hash.state -> Base.Int.t -> Base.Hash.state
val hash_int : Base.Int.t -> Base.Hash.hash_value
val sexp_of_int : Base.Int.t -> Ppx_sexp_conv_lib.Sexp.t
val int_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int.t
val int_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_int : Base.Int.t Typerep_lib.Std.Typerep.t
val typename_of_int : Base.Int.t Typerep_lib.Std.Typename.t
val bin_shape_int32 : Bin_prot.Shape.t
val bin_size_int32 : Base.Int32.t Bin_prot.Size.sizer
val bin_write_int32 : Base.Int32.t Bin_prot.Write.writer
val bin_writer_int32 : Base.Int32.t Bin_prot.Type_class.writer
val bin_read_int32 : Base.Int32.t Bin_prot.Read.reader
val __bin_read_int32__ : (Base.Int.t -> Base.Int32.t) Bin_prot.Read.reader
val bin_reader_int32 : Base.Int32.t Bin_prot.Type_class.reader
val bin_int32 : Base.Int32.t Bin_prot.Type_class.t
val compare_int32 : Base.Int32.t -> Base.Int32.t -> Base.Int.t
val equal_int32 : Base.Int32.t -> Base.Int32.t -> Base.Bool.t
val hash_fold_int32 : Base.Hash.state -> Base.Int32.t -> Base.Hash.state
val hash_int32 : Base.Int32.t -> Base.Hash.hash_value
val sexp_of_int32 : Base.Int32.t -> Ppx_sexp_conv_lib.Sexp.t
val int32_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int32.t
val int32_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_int32 : Base.Int32.t Typerep_lib.Std.Typerep.t
val typename_of_int32 : Base.Int32.t Typerep_lib.Std.Typename.t
val bin_shape_int64 : Bin_prot.Shape.t
val bin_size_int64 : Base.Int64.t Bin_prot.Size.sizer
val bin_write_int64 : Base.Int64.t Bin_prot.Write.writer
val bin_writer_int64 : Base.Int64.t Bin_prot.Type_class.writer
val bin_read_int64 : Base.Int64.t Bin_prot.Read.reader
val __bin_read_int64__ : (Base.Int.t -> Base.Int64.t) Bin_prot.Read.reader
val bin_reader_int64 : Base.Int64.t Bin_prot.Type_class.reader
val bin_int64 : Base.Int64.t Bin_prot.Type_class.t
val compare_int64 : Base.Int64.t -> Base.Int64.t -> Base.Int.t
val equal_int64 : Base.Int64.t -> Base.Int64.t -> Base.Bool.t
val hash_fold_int64 : Base.Hash.state -> Base.Int64.t -> Base.Hash.state
val hash_int64 : Base.Int64.t -> Base.Hash.hash_value
val sexp_of_int64 : Base.Int64.t -> Ppx_sexp_conv_lib.Sexp.t
val int64_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int64.t
val int64_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_int64 : Base.Int64.t Typerep_lib.Std.Typerep.t
val typename_of_int64 : Base.Int64.t Typerep_lib.Std.Typename.t
val bin_shape_lazy_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_lazy_t : 'a Bin_prot.Size.sizer -> 'a lazy_t Bin_prot.Size.sizer
val bin_write_lazy_t : 'a Bin_prot.Write.writer -> 'a lazy_t Bin_prot.Write.writer
val bin_writer_lazy_t : 'a Bin_prot.Type_class.writer -> 'a lazy_t Bin_prot.Type_class.writer
val bin_read_lazy_t : 'a Bin_prot.Read.reader -> 'a lazy_t Bin_prot.Read.reader
val __bin_read_lazy_t__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a lazy_t) Bin_prot.Read.reader
val bin_reader_lazy_t : 'a Bin_prot.Type_class.reader -> 'a lazy_t Bin_prot.Type_class.reader
val bin_lazy_t : 'a Bin_prot.Type_class.t -> 'a lazy_t Bin_prot.Type_class.t
val compare_lazy_t : ('a -> 'a -> Base.Int.t) -> 'a lazy_t -> 'a lazy_t -> Base.Int.t
val hash_fold_lazy_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a lazy_t -> Base.Hash.state
val sexp_of_lazy_t : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a lazy_t -> Ppx_sexp_conv_lib.Sexp.t
val lazy_t_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a lazy_t
val lazy_t_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val bin_shape_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_list : 'a Bin_prot.Size.sizer -> 'a Base.List.t Bin_prot.Size.sizer
val bin_write_list : 'a Bin_prot.Write.writer -> 'a Base.List.t Bin_prot.Write.writer
val bin_writer_list : 'a Bin_prot.Type_class.writer -> 'a Base.List.t Bin_prot.Type_class.writer
val bin_read_list : 'a Bin_prot.Read.reader -> 'a Base.List.t Bin_prot.Read.reader
val __bin_read_list__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.List.t) Bin_prot.Read.reader
val bin_reader_list : 'a Bin_prot.Type_class.reader -> 'a Base.List.t Bin_prot.Type_class.reader
val bin_list : 'a Bin_prot.Type_class.t -> 'a Base.List.t Bin_prot.Type_class.t
val compare_list : ('a -> 'a -> Base.Int.t) -> 'a Base.List.t -> 'a Base.List.t -> Base.Int.t
val equal_list : ('a -> 'a -> Base.Bool.t) -> 'a Base.List.t -> 'a Base.List.t -> Base.Bool.t
val hash_fold_list : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a Base.List.t -> Base.Hash.state
val sexp_of_list : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.List.t -> Ppx_sexp_conv_lib.Sexp.t
val list_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.List.t
val list_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_list : 'a Typerep_lib.Std.Typerep.t -> 'a Base.List.t Typerep_lib.Std.Typerep.t
val typename_of_list : 'a Typerep_lib.Std.Typename.t -> 'a Base.List.t Typerep_lib.Std.Typename.t
val bin_shape_nativeint : Bin_prot.Shape.t
val bin_size_nativeint : Base.Nativeint.t Bin_prot.Size.sizer
val bin_write_nativeint : Base.Nativeint.t Bin_prot.Write.writer
val bin_writer_nativeint : Base.Nativeint.t Bin_prot.Type_class.writer
val bin_read_nativeint : Base.Nativeint.t Bin_prot.Read.reader
val __bin_read_nativeint__ : (Base.Int.t -> Base.Nativeint.t) Bin_prot.Read.reader
val bin_reader_nativeint : Base.Nativeint.t Bin_prot.Type_class.reader
val bin_nativeint : Base.Nativeint.t Bin_prot.Type_class.t
val compare_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Int.t
val equal_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Bool.t
val hash_fold_nativeint : Base.Hash.state -> Base.Nativeint.t -> Base.Hash.state
val hash_nativeint : Base.Nativeint.t -> Base.Hash.hash_value
val sexp_of_nativeint : Base.Nativeint.t -> Ppx_sexp_conv_lib.Sexp.t
val nativeint_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Nativeint.t
val nativeint_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typerep.t
val typename_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typename.t
val bin_shape_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_option : 'a Bin_prot.Size.sizer -> 'a Base.Option.t Bin_prot.Size.sizer
val bin_write_option : 'a Bin_prot.Write.writer -> 'a Base.Option.t Bin_prot.Write.writer
val bin_writer_option : 'a Bin_prot.Type_class.writer -> 'a Base.Option.t Bin_prot.Type_class.writer
val bin_read_option : 'a Bin_prot.Read.reader -> 'a Base.Option.t Bin_prot.Read.reader
val __bin_read_option__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Option.t) Bin_prot.Read.reader
val bin_reader_option : 'a Bin_prot.Type_class.reader -> 'a Base.Option.t Bin_prot.Type_class.reader
val bin_option : 'a Bin_prot.Type_class.t -> 'a Base.Option.t Bin_prot.Type_class.t
val compare_option : ('a -> 'a -> Base.Int.t) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Int.t
val equal_option : ('a -> 'a -> Base.Bool.t) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Bool.t
val hash_fold_option : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a Base.Option.t -> Base.Hash.state
val sexp_of_option : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Option.t -> Ppx_sexp_conv_lib.Sexp.t
val option_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Option.t
val option_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_option : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Option.t Typerep_lib.Std.Typerep.t
val typename_of_option : 'a Typerep_lib.Std.Typename.t -> 'a Base.Option.t Typerep_lib.Std.Typename.t
val bin_shape_string : Bin_prot.Shape.t
val bin_size_string : Base.String.t Bin_prot.Size.sizer
val bin_write_string : Base.String.t Bin_prot.Write.writer
val bin_writer_string : Base.String.t Bin_prot.Type_class.writer
val bin_read_string : Base.String.t Bin_prot.Read.reader
val __bin_read_string__ : (Base.Int.t -> Base.String.t) Bin_prot.Read.reader
val bin_reader_string : Base.String.t Bin_prot.Type_class.reader
val bin_string : Base.String.t Bin_prot.Type_class.t
val compare_string : Base.String.t -> Base.String.t -> Base.Int.t
val equal_string : Base.String.t -> Base.String.t -> Base.Bool.t
val hash_fold_string : Base.Hash.state -> Base.String.t -> Base.Hash.state
val hash_string : Base.String.t -> Base.Hash.hash_value
val sexp_of_string : Base.String.t -> Ppx_sexp_conv_lib.Sexp.t
val string_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.String.t
val string_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_string : Base.String.t Typerep_lib.Std.Typerep.t
val typename_of_string : Base.String.t Typerep_lib.Std.Typename.t
val bin_shape_bytes : Bin_prot.Shape.t
val bin_size_bytes : Base.Bytes.t Bin_prot.Size.sizer
val bin_write_bytes : Base.Bytes.t Bin_prot.Write.writer
val bin_writer_bytes : Base.Bytes.t Bin_prot.Type_class.writer
val bin_read_bytes : Base.Bytes.t Bin_prot.Read.reader
val __bin_read_bytes__ : (Base.Int.t -> Base.Bytes.t) Bin_prot.Read.reader
val bin_reader_bytes : Base.Bytes.t Bin_prot.Type_class.reader
val bin_bytes : Base.Bytes.t Bin_prot.Type_class.t
val compare_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Int.t
val equal_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Bool.t
val sexp_of_bytes : Base.Bytes.t -> Ppx_sexp_conv_lib.Sexp.t
val bytes_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bytes.t
val bytes_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_bytes : Base.Bytes.t Typerep_lib.Std.Typerep.t
val typename_of_bytes : Base.Bytes.t Typerep_lib.Std.Typename.t
val bin_shape_ref : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_ref : 'a Bin_prot.Size.sizer -> 'a ref Bin_prot.Size.sizer
val bin_write_ref : 'a Bin_prot.Write.writer -> 'a ref Bin_prot.Write.writer
val bin_writer_ref : 'a Bin_prot.Type_class.writer -> 'a ref Bin_prot.Type_class.writer
val bin_read_ref : 'a Bin_prot.Read.reader -> 'a ref Bin_prot.Read.reader
val __bin_read_ref__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a ref) Bin_prot.Read.reader
val bin_reader_ref : 'a Bin_prot.Type_class.reader -> 'a ref Bin_prot.Type_class.reader
val bin_ref : 'a Bin_prot.Type_class.t -> 'a ref Bin_prot.Type_class.t
val compare_ref : ('a -> 'a -> Base.Int.t) -> 'a ref -> 'a ref -> Base.Int.t
val equal_ref : ('a -> 'a -> Base.Bool.t) -> 'a ref -> 'a ref -> Base.Bool.t
val sexp_of_ref : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a ref -> Ppx_sexp_conv_lib.Sexp.t
val ref_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a ref
val ref_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_ref : 'a Typerep_lib.Std.Typerep.t -> 'a ref Typerep_lib.Std.Typerep.t
val typename_of_ref : 'a Typerep_lib.Std.Typename.t -> 'a ref Typerep_lib.Std.Typename.t
val bin_shape_unit : Bin_prot.Shape.t
val bin_size_unit : Base.Unit.t Bin_prot.Size.sizer
val bin_write_unit : Base.Unit.t Bin_prot.Write.writer
val bin_writer_unit : Base.Unit.t Bin_prot.Type_class.writer
val bin_read_unit : Base.Unit.t Bin_prot.Read.reader
val __bin_read_unit__ : (Base.Int.t -> Base.Unit.t) Bin_prot.Read.reader
val bin_reader_unit : Base.Unit.t Bin_prot.Type_class.reader
val bin_unit : Base.Unit.t Bin_prot.Type_class.t
val compare_unit : Base.Unit.t -> Base.Unit.t -> Base.Int.t
val equal_unit : Base.Unit.t -> Base.Unit.t -> Base.Bool.t
val hash_fold_unit : Base.Hash.state -> Base.Unit.t -> Base.Hash.state
val hash_unit : Base.Unit.t -> Base.Hash.hash_value
val sexp_of_unit : Base.Unit.t -> Ppx_sexp_conv_lib.Sexp.t
val unit_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Unit.t
val unit_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_unit : Base.Unit.t Typerep_lib.Std.Typerep.t
val typename_of_unit : Base.Unit.t Typerep_lib.Std.Typename.t
type float_array = Base.Float.t Base.Array.t
val bin_shape_float_array : Bin_prot.Shape.t
val bin_size_float_array : float_array Bin_prot.Size.sizer
val bin_write_float_array : float_array Bin_prot.Write.writer
val bin_writer_float_array : float_array Bin_prot.Type_class.writer
val bin_read_float_array : float_array Bin_prot.Read.reader
val __bin_read_float_array__ : (Base.Int.t -> float_array) Bin_prot.Read.reader
val bin_reader_float_array : float_array Bin_prot.Type_class.reader
val bin_float_array : float_array Bin_prot.Type_class.t
val compare_float_array : float_array -> float_array -> Base.Int.t
val sexp_of_float_array : float_array -> Ppx_sexp_conv_lib.Sexp.t
val float_array_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> float_array
val float_array_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t
val typerep_of_float_array : float_array Typerep_lib.Std.Typerep.t
val typename_of_float_array : float_array Typerep_lib.Std.Typename.t
val sexp_of_exn : Base.Exn.t -> Base.Sexp.t
type 'a sexp_array = 'a Base.Array.t
val bin_shape_sexp_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_array : a. 'a Bin_prot.Size.sizer -> 'a sexp_array Bin_prot.Size.sizer
val bin_write_sexp_array : a. 'a Bin_prot.Write.writer -> 'a sexp_array Bin_prot.Write.writer
val bin_writer_sexp_array : 'a Bin_prot.Type_class.writer -> 'a sexp_array Bin_prot.Type_class.writer
val __bin_read_sexp_array__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_array) Bin_prot.Read.reader
val bin_read_sexp_array : a. 'a Bin_prot.Read.reader -> 'a sexp_array Bin_prot.Read.reader
val bin_reader_sexp_array : 'a Bin_prot.Type_class.reader -> 'a sexp_array Bin_prot.Type_class.reader
val bin_sexp_array : 'a Bin_prot.Type_class.t -> 'a sexp_array Bin_prot.Type_class.t
val compare_sexp_array : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_array -> 'a sexp_array -> Base.Int.t
module Typename_of_sexp_array : sig ... end
val typename_of_sexp_array : 'a Typerep_lib.Typename.t -> 'a sexp_array Typerep_lib.Typename.t
val typerep_of_sexp_array : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_array Typerep_lib.Std.Typerep.t
type sexp_bool = Base.Bool.t
val bin_shape_sexp_bool : Bin_prot.Shape.t
val bin_size_sexp_bool : sexp_bool Bin_prot.Size.sizer
val bin_write_sexp_bool : sexp_bool Bin_prot.Write.writer
val bin_writer_sexp_bool : sexp_bool Bin_prot.Type_class.writer
val __bin_read_sexp_bool__ : (Base.Int.t -> sexp_bool) Bin_prot.Read.reader
val bin_read_sexp_bool : sexp_bool Bin_prot.Read.reader
val bin_reader_sexp_bool : sexp_bool Bin_prot.Type_class.reader
val bin_sexp_bool : sexp_bool Bin_prot.Type_class.t
val compare_sexp_bool : sexp_bool -> sexp_bool -> Base.Int.t
val hash_fold_sexp_bool : Base.Hash.state -> sexp_bool -> Base.Hash.state
val hash_sexp_bool : sexp_bool -> Base.Hash.hash_value
module Typename_of_sexp_bool : sig ... end
val typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.t
val typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.t
type 'a sexp_list = 'a Base.List.t
val bin_shape_sexp_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_list : a. 'a Bin_prot.Size.sizer -> 'a sexp_list Bin_prot.Size.sizer
val bin_write_sexp_list : a. 'a Bin_prot.Write.writer -> 'a sexp_list Bin_prot.Write.writer
val bin_writer_sexp_list : 'a Bin_prot.Type_class.writer -> 'a sexp_list Bin_prot.Type_class.writer
val __bin_read_sexp_list__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_list) Bin_prot.Read.reader
val bin_read_sexp_list : a. 'a Bin_prot.Read.reader -> 'a sexp_list Bin_prot.Read.reader
val bin_reader_sexp_list : 'a Bin_prot.Type_class.reader -> 'a sexp_list Bin_prot.Type_class.reader
val bin_sexp_list : 'a Bin_prot.Type_class.t -> 'a sexp_list Bin_prot.Type_class.t
val compare_sexp_list : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_list -> 'a sexp_list -> Base.Int.t
val hash_fold_sexp_list : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_list -> Base.Hash.state
module Typename_of_sexp_list : sig ... end
val typename_of_sexp_list : 'a Typerep_lib.Typename.t -> 'a sexp_list Typerep_lib.Typename.t
val typerep_of_sexp_list : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_list Typerep_lib.Std.Typerep.t
type 'a sexp_option = 'a Base.Option.t
val bin_shape_sexp_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_option : a. 'a Bin_prot.Size.sizer -> 'a sexp_option Bin_prot.Size.sizer
val bin_write_sexp_option : a. 'a Bin_prot.Write.writer -> 'a sexp_option Bin_prot.Write.writer
val bin_writer_sexp_option : 'a Bin_prot.Type_class.writer -> 'a sexp_option Bin_prot.Type_class.writer
val __bin_read_sexp_option__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_option) Bin_prot.Read.reader
val bin_read_sexp_option : a. 'a Bin_prot.Read.reader -> 'a sexp_option Bin_prot.Read.reader
val bin_reader_sexp_option : 'a Bin_prot.Type_class.reader -> 'a sexp_option Bin_prot.Type_class.reader
val bin_sexp_option : 'a Bin_prot.Type_class.t -> 'a sexp_option Bin_prot.Type_class.t
val compare_sexp_option : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_option -> 'a sexp_option -> Base.Int.t
val hash_fold_sexp_option : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_option -> Base.Hash.state
module Typename_of_sexp_option : sig ... end
val typename_of_sexp_option : 'a Typerep_lib.Typename.t -> 'a sexp_option Typerep_lib.Typename.t
val typerep_of_sexp_option : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_option Typerep_lib.Std.Typerep.t
val bin_shape_sexp_opaque : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_opaque : a. 'a Bin_prot.Size.sizer -> 'a sexp_opaque Bin_prot.Size.sizer
val bin_write_sexp_opaque : a. 'a Bin_prot.Write.writer -> 'a sexp_opaque Bin_prot.Write.writer
val bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer -> 'a sexp_opaque Bin_prot.Type_class.writer
val __bin_read_sexp_opaque__ : a. 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a sexp_opaque) Bin_prot.Read.reader
val bin_read_sexp_opaque : a. 'a Bin_prot.Read.reader -> 'a sexp_opaque Bin_prot.Read.reader
val bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader -> 'a sexp_opaque Bin_prot.Type_class.reader
val bin_sexp_opaque : 'a Bin_prot.Type_class.t -> 'a sexp_opaque Bin_prot.Type_class.t
val compare_sexp_opaque : a. ('a -> 'a -> Base.Int.t) -> 'a sexp_opaque -> 'a sexp_opaque -> Base.Int.t
val hash_fold_sexp_opaque : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_opaque -> Base.Hash.state
module Typename_of_sexp_opaque : sig ... end
val typename_of_sexp_opaque : 'a Typerep_lib.Typename.t -> 'a sexp_opaque Typerep_lib.Typename.t
val typerep_of_sexp_opaque : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_opaque Typerep_lib.Std.Typerep.t
exception Not_found_s of Sexplib0.Sexp.t
val sec : Base.Float.t -> Base.Float.t
module Core_kernel_private : sig ... end
To be used in implementing Core, but not by end users.