Core_kernel.NothingThis module extends Base.Nothing.
include module type of struct include Base.Nothing endHaving [@@deriving enumerate] may seem strange due to the fact that generated val all : t list is the empty list, so it seems like it could be of no use.
This may be true if you always expect your type to be Nothing.t, but [@@deriving
enumerate] can be useful if you have a type which you expect to change over time. For example, you may have a program which has to interact with multiple servers which are possibly at different versions. It may be useful in this program to have a variant type which enumerates the ways in which the servers may differ. When all the servers are at the same version, you can change this type to Nothing.t and code which uses an enumeration of the type will continue to work correctly.
This is a similar issue to the identifiability of Nothing.t. As discussed below, another case where [@deriving enumerate] could be useful is when this type is part of some larger type.
val all : t listval unreachable_code : t -> _Because there are no values of type Nothing.t, a piece of code that has a value of type Nothing.t must be unreachable. In such an unreachable piece of code, one can use unreachable_code to give the code whatever type one needs. For example:
let f (r : (int, Nothing.t) Result.t) : int =
match r with
| Ok i -> i
| Error n -> Nothing.unreachable_code n
;;Note that the compiler knows that Nothing.t is uninhabited, hence this will type without warning:
let f (Ok i : (int, Nothing.t) Result.t) = iIt may seem weird that this is identifiable, but we're just trying to anticipate all the contexts in which people may need this. It would be a crying shame if you had some variant type involving Nothing.t that you wished to make identifiable, but were prevented for lack of Identifiable.S here.
Obviously, of_string and t_of_sexp will raise an exception.
include Base.Identifiable.S with type t := tinclude Base.Sexpable.S with type t := tinclude Base.Stringable.S with type t := tinclude Base.Pretty_printer.S with type t := tIt may seem weird that this is identifiable, but we're just trying to anticipate all the contexts in which people may need this. It would be a crying shame if you had some variant type involving Nothing.t that you wished to make identifiable, but were prevented for lack of Identifiable.S here.
Obviously, of_string and t_of_sexp will raise an exception.
include Identifiable.S with type t := t and type comparator_witness := comparator_witnessinclude Bin_prot.Binable.S with type t := tinclude Bin_prot.Binable.S_only_functions with type t := tval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueinclude Ppx_sexp_conv_lib.Sexpable.S with type t := tval t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.tinclude Identifiable.S_common with type t := tval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.tinclude Base.Pretty_printer.S with type t := tval pp : Base.Formatter.t -> t -> unitinclude Comparable.S_binable with type t := t with type comparator_witness := comparator_witnessinclude Base.Comparable.S with type t := t with type comparator_witness := comparator_witnessinclude Base.Comparisons.S with type t := tcompare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.tinclude Base.Comparator.S with type t := t with type comparator_witness := comparator_witnessval validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.checkmodule Replace_polymorphic_compare : Base.Comparable.Polymorphic_compare with type t := tinclude Comparator.S with type t := t with type comparator_witness := comparator_witnessval comparator : (t, comparator_witness) Comparator.comparatormodule Map : Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Hashable.S_binable with type t := tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval hashable : t Hashtbl.Hashable.tmodule Table : Hashtbl.S_binable with type key = tmodule Hash_set : Hash_set.S_binable with type elt = tmodule Hash_queue : Hash_queue.S with type key = tmodule Stable : sig ... end