Core_kernel.Int63This module extends Base.Int63.
include module type of struct include Base.Int63 endThe @@immediate64 attribute is to indicate that t is implemented by a type that is immediate only on 64 bit platforms. It is currently ignored by the compiler, however we are hoping that one day it will be taken into account so that the compiler can omit caml_modify when dealing with mutable data structures holding Int63.t values.
include Base.Sexpable.S with type t := tval t_sexp_grammar : Base.Sexp.Private.Raw_grammar.tinclude Base.Identifiable.S with type t := tinclude Base.Sexpable.S with type t := tinclude Base.Stringable.S with type t := tinclude Base.Pretty_printer.S with type t := tinclude Base.Comparable.With_zero with type t := tval validate_positive : t Base.Validate.checkval validate_non_negative : t Base.Validate.checkval validate_negative : t Base.Validate.checkval validate_non_positive : t Base.Validate.checkval is_positive : t -> boolval is_non_negative : t -> boolval is_negative : t -> boolval is_non_positive : t -> boolval sign : t -> Base__Sign0.tReturns Neg, Zero, or Pos in a way consistent with the above functions.
include Base.Invariant.S with type t := tval invariant : t -> unitval to_string_hum : ?delimiter:char -> t -> stringdelimiter is an underscore by default.
val zero : tval one : tval minus_one : tNegation
There are two pairs of integer division and remainder functions, /% and %, and / and rem. They both satisfy the same equation relating the quotient and the remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);The functions return the same values if x and y are positive. They all raise if y = 0.
The functions differ if x < 0 or y < 0.
If y < 0, then % and /% raise, whereas / and rem do not.
x % y always returns a value between 0 and y - 1, even when x < 0. On the other hand, rem x y returns a negative value if and only if x < 0; that value satisfies abs (rem x y) <= abs y - 1.
round rounds an int to a multiple of a given to_multiple_of argument, according to a direction dir, with default dir being `Nearest. round will raise if to_multiple_of <= 0. If the result overflows (too far positive or too far negative), round returns an incorrect result.
| `Down | rounds toward Int.neg_infinity |
| `Up | rounds toward Int.infinity |
| `Nearest | rounds to the nearest multiple, or `Up in case of a tie |
| `Zero | rounds toward zero |Here are some examples for round ~to_multiple_of:10 for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
| `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
| `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
| `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |For convenience and performance, there are variants of round with dir hard-coded. If you are writing performance-critical code you should use these.
Returns the absolute value of the argument. May be negative if the input is min_value.
pow base exponent returns base raised to the power of exponent. It is OK if base <= 0. pow raises if exponent < 0, or an integer overflow would occur.
These are identical to land, lor, etc. except they're not infix and have different names.
val popcount : t -> intReturns the number of 1 bits in the binary representation of the input.
The results are unspecified for negative shifts and shifts >= num_bits.
val of_int32_exn : int32 -> tval to_int32_exn : t -> int32val of_int64_exn : int64 -> tval to_int64 : t -> int64val of_nativeint_exn : nativeint -> tval to_nativeint_exn : t -> nativeintval of_float_unchecked : float -> tof_float_unchecked truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
The number of bits available in this integer type. Note that the integer representations are signed.
val max_value : tThe largest representable integer.
val min_value : tThe smallest representable integer.
Shifts right, filling in with zeroes, which will not preserve the sign of the input.
ceil_pow2 x returns the smallest power of 2 that is greater than or equal to x. The implementation may only be called for x > 0. Example: ceil_pow2 17 = 32
floor_pow2 x returns the largest power of 2 that is less than or equal to x. The implementation may only be called for x > 0. Example: floor_pow2 17 = 16
val ceil_log2 : t -> intceil_log2 x returns the ceiling of log-base-2 of x, and raises if x <= 0.
val is_pow2 : t -> boolis_pow2 x returns true iff x is a power of 2. is_pow2 raises if x <= 0.
val clz : t -> intReturns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.
The results are unspecified for t = 0.
val ctz : t -> intReturns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.
The results are unspecified for t = 0.
module O : sig ... endA sub-module designed to be opened to make working with ints more convenient.
Unlike the usual operations, these never overflow, preferring instead to raise.
module Overflow_exn : sig ... endval of_int : int -> tval to_int : t -> int optionval of_int32 : Base.Int32.t -> tval to_int32 : t -> Base.Int32.t optionval of_int64 : Base.Int64.t -> t optionval of_nativeint : nativeint -> t optionval to_nativeint : t -> nativeint optionThese functions return the least-significant bits of the input. In cases where optional conversions return Some x, truncating conversions return x.
val to_int_trunc : t -> intval to_int32_trunc : t -> Base.Int32.tval of_int64_trunc : Base.Int64.t -> tval of_nativeint_trunc : nativeint -> tval to_nativeint_trunc : t -> nativeintSee Int's byte swap section for a description of Base's approach to exposing byte swap primitives.
val random : ?state:Base.Random.State.t -> t -> trandom ~state bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.
The default ~state is Random.State.default.
val random_incl : ?state:Base.Random.State.t -> t -> t -> trandom_incl ~state lo hi returns a random integer between lo (inclusive) and hi (inclusive). Raises if lo > hi.
The default ~state is Random.State.default.
val floor_log2 : t -> intfloor_log2 x returns the floor of log-base-2 of x, and raises if x <= 0.
include Int_intf.Extension_with_stable with type t := t and type comparator_witness := comparator_witnessinclude Int_intf.Extension with type t := t with type comparator_witness := comparator_witnessinclude Bin_prot.Binable.S with type t := tinclude Bin_prot.Binable.S_only_functions with type t := tval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tinclude Int_intf.Hexable with type t := tmodule Hex : sig ... endinclude Identifiable.S with type t := t with type comparator_witness := comparator_witnessinclude Bin_prot.Binable.S with type t := tinclude Bin_prot.Binable.S_only_functions with type t := tval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueinclude Ppx_sexp_conv_lib.Sexpable.S with type t := tval t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.tinclude Identifiable.S_common with type t := tval sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.tinclude Base.Pretty_printer.S with type t := tval pp : Base.Formatter.t -> t -> unitinclude Comparable.S_binable with type t := t with type comparator_witness := comparator_witnessinclude Base.Comparable.S with type t := t with type comparator_witness := comparator_witnessinclude Base.Comparisons.S with type t := tcompare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.tinclude Base.Comparator.S with type t := t with type comparator_witness := comparator_witnessval validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.checkmodule Replace_polymorphic_compare : Base.Comparable.Polymorphic_compare with type t := tinclude Comparator.S with type t := t with type comparator_witness := comparator_witnessval comparator : (t, comparator_witness) Comparator.comparatormodule Map : Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Hashable.S_binable with type t := tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval hashable : t Hashtbl.Hashable.tmodule Table : Hashtbl.S_binable with type key = tmodule Hash_set : Hash_set.S_binable with type elt = tmodule Hash_queue : Hash_queue.S with type key = tinclude Quickcheckable.S_int with type t := tinclude Quickcheck_intf.S_range with type t := tinclude Quickcheck_intf.S with type t := tval quickcheck_generator : t Base_quickcheck.Generator.tval quickcheck_observer : t Base_quickcheck.Observer.tval quickcheck_shrinker : t Base_quickcheck.Shrinker.tval gen_incl : t -> t -> t Base_quickcheck.Generator.tgen_incl lower_bound upper_bound produces values between lower_bound and upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound.
val gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_uniform_incl lower_bound upper_bound produces a generator for values uniformly distributed between lower_bound and upper_bound, inclusive. Raises if lower_bound > upper_bound.
val gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_uniform_incl lower_bound upper_bound produces a generator for values between lower_bound and upper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) ||
(lower_bound > upper_bound).
val gen_log_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_incl lower_bound upper_bound is like gen_log_uniform_incl, but weighted slightly more in favor of generating lower_bound and upper_bound specifically.
module Stable : Int_intf.Stable with type V1.t = t and type V1.comparator_witness = comparator_witness