Unique_id.IntAn abstract unique identifier based on ordinary OCaml integers. Be careful, this may easily overflow on 32-bit platforms! Int63 is a safer choice for portability.
Int is useful when one is passing unique ids to C and needs a guarantee as to their representation. Int is always represented as an integer, while Int63 is either an integer (on 64-bit machines) or a pointer (on 32-bit machines).
The generated ids will therefore be fast to generate and not use much memory. If you do not have very stringent requirements on the size, speed, and ordering of your IDs then you should use the UUIDM library instead, which will give you a truly unique id, even amongst different runs and different machines.
type t = private Base.Int.tThe sexps and strings look like integers.
include Bin_prot.Binable.S with type t := tinclude Bin_prot.Binable.S_only_functions with type t := tval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueinclude Ppx_sexp_conv_lib.Sexpable.S with type t := tval t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.tCaveat: values created with of_float, of_sexp, or of_string may be equal to previously created values.
include Comparable.S_binable with type t := tinclude Base.Comparable.S with type t := tinclude Base.Comparisons.S with type t := tcompare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.tinclude Base.Comparator.S with type t := tval validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.checkmodule Replace_polymorphic_compare : Base.Comparable.Polymorphic_compare with type t := tinclude Comparator.S with type t := t with type comparator_witness := comparator_witnessval comparator : (t, comparator_witness) Comparator.comparatormodule Map : Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Hashable.S_binable with type t := tval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueval hashable : t Hashtbl.Hashable.tmodule Table : Hashtbl.S_binable with type key = tmodule Hash_set : Hash_set.S_binable with type elt = tmodule Hash_queue : Hash_queue.S with type key = tval create : Base.Unit.t -> tAlways returns a value that is not equal to any other value created with create.